NOTES AND CORRESPONDENCE

Comments on "Observational Analysis of the Predictability of Mesoscale Convective Systems"

MATTHEW J. BUNKERS
NOAA/National Weather Service, Rapid City, South Dakota
(Submitted to Weather and Forecasting 8 February 2008)

Corresponding author address: Dr. Matthew J. Bunkers, National Weather Service, 300 East Signal Drive, Rapid City, SD 57701-3800.

E-mail: <u>matthew.bunkers@noaa.gov</u>

1. Introduction

Jirak and Cotton (2007, hereafter JC07) proposed a new index to assist in forecasting the development of mesoscale convective systems (MCSs). This "MCS index" is the summation of three components which are a function of the (i) "best" lifted index (LI), (ii) 0–3-km shear vector magnitude (SVM), and (iii) 700-mb temperature advection (TAdv). JC07's study also reemphasized important aspects of MCS development, namely, the importance of the low-level jet (e.g., Junker et al. 1999) and low-level warm advection (e.g., Maddox and Doswell 1982) in the development and sustenance of MCSs. Their MCS index attempts to account for these important physical processes.

The use of indices has become ubiquitous in operational weather forecasting, especially in the realm of deep moist convection. Unfortunately, indices easily can be misused and overused, as discussed by Doswell and Schultz (2006). Some indices have been developed arbitrarily, while others lack a robust physical foundation. This may be complicated further when multiple variables are combined into a single index. Consequently, before operational forecasters can utilize indices to their potential advantage, they need a solid understanding of both how the indices were developed and the relative importance of their underlying components.

The intent of this comment is to consider the MCS index and its three components, and subsequently to use the findings as motivation for others—in training and operational roles—to investigate such indices before they transfer them to operations. This study was conceived as the MCS index was being tested for operational use at the Weather Forecast Office (WFO) in Rapid City, South Dakota (RAP). Although the results do not refute the MCS index per se, there is concern this index (and possibly others) may be misapplied using standard operational gridded

datasets. Ultimately, it is shown that the MCS index, in its present form, is not suitable for operational forecasting.

2. Examination of the MCS index and its components

The MCS index (JC07) is computed by summing three components as follows:

$$MCS \ index = \frac{(-LI - 4.4 \,^{\circ}\text{C})}{(3.3 \,^{\circ}\text{C})} + \frac{(SVM - 11.5 \, m \, s^{-1})}{(5 \, m \, s^{-1})} + \frac{(TAdv - 4.5 \times 10^{-5} \, K \, s^{-1})}{(7.3 \times 10^{-5} \, K \, s^{-1})}, \tag{1}$$

where the three variables (LI, SVM, and TAdv—defined above) have been transformed to "standard normal form" (having a mean of zero and a standard deviation of unity); the MCS index is unitless because of this normalization. JC07 derived the means and standard deviations using North American Regional Reanalysis (NARR; Mesinger et al. 2006) data with 32-km grid spacing for 383 MCS events. Various grid-point data for each MCS event were extracted 6 h prior to MCS initiation at the location (i.e., grid point) of the subsequent -52°C cloud shield centroid at MCS initiation.

After the MCS index was coded according to Eqn. (1) for the Advanced Weather Interactive Processing System (AWIPS) at WFO RAP, the individual variables were overlaid on the MCS index to view the relative importance of these three constituents. Using an arbitrary convective event with standard operational gridded datasets, it was found during testing that the TAdv contour pattern displayed notable similarity to that of the MCS index, especially for the relatively large absolute TAdv values (e.g., Fig. 1). This behavior was not unique to this one event; indeed, it was found with 20 other arbitrarily selected archived convective events.

In order to understand the underlying cause(s) of this unexpected behavior, the three components of the MCS index were computed for an operationally viable range of conditions (Table 1). This range spans most values observed during typical convective situations, but it does not necessarily capture all extreme values. Moreover, this range is valid for operational datasets with output grid spacing of 13 km, 40 km, and 80 km. Although TAdv variability increases as grid spacing decreases from 80 km to 13 km (because TAdv is a derivative), extreme values of $\pm 97.2 \times 10^{-5}$ K s⁻¹ (± 3.5 °C h⁻¹) were noted in testing with 80-km grids.

It is clear that the TAdv variability from JC07's dataset (shaded region of TAdv in Table 1) represents only a small portion (<40%) of the typical operational variability ¹. JC07's TAdv values for a range of $\pm2\sigma$ from the mean (-10.1×10^{-5} to $+19.1\times10^{-5}$ K s⁻¹, or -0.36 to +0.69 °C h⁻¹), which represent 95% of a Gaussian distribution, would be considered only weak-to-modest by operational standards. The operational range of TAdv values in Table 1 arguably could be even greater (e.g., -2.0 to +3.0 °C h⁻¹), making this discrepancy even more apparent.

The divergence among the three components becomes more evident when they are plotted together (Fig. 2). Although the component values for LI and SVM follow similar trends, the component values for TAdv (dotted line in Fig. 2) cover a range more than 2.2 times as large. It is possible that TAdv is relatively more important than the LI and SVM variables in forecasting

The LI and SVM operational ranges, on the other hand, appear to be in reasonable agreement with the ranges from JC07. Since the LI was measured 6 h prior to MCS initiation proximate to the subsequent MCS, it is understandable that it would be biased toward negative values (Table 1). However, not too far removed from this point (e.g., toward the cold side of a nearby surface frontal zone), LI values in excess of +10 have been observed (e.g., Colman 1990).

MCS development; however, the Heidke skill score (HSS) results presented in JC07 (their Table 8) indicate that SVM is more important than TAdv in this regard. It is thus unreasonable to expect the TAdv component values to rise more rapidly and to be larger than those for the SVM (as in Fig. 2).

JC07 presented MCS index values that range mostly from -4 to +4 (e.g., refer to their Figs. 12 and 14–18). By way of comparison, if the component values in Table 1 reached their extremes concurrently, the MCS index values would range from -8.9 to +12. What is more, MCS index values of -20 to +17 were found during testing with the 20 aforementioned cases using Rapid Update Cycle (RUC) model output on a 40-km grid; Figure 1 reveals MCS index values in excess of +8. Hence, the undue weight given to the TAdv component—by virtue of the nature of standard operational gridded datasets—can seriously inflate the MCS index, making it not much more than a proxy for TAdv when TAdv values exceed 25.0×10⁻⁵ K s⁻¹ (0.9 °C h⁻¹); this is an occurrence common to many convective events. For example, in a typical convective scenario (e.g., LI = -6, SVM = 15 m s⁻¹, and TAdv = 27.8×10⁻⁵ K s⁻¹ or 1.0 °C h⁻¹) the MCS index might be 4.4 (components 0.5 + 0.7 + 3.2, respectively, see Table 1), but with 73% of the contribution arising from TAdv. This has implications for the guidelines of the MCS index as well (JC07, their Table 10).

Why is the TAdv variability not consistent between JC07's study and the operational datasets? First, it is possible the maximum values of TAdv are underrepresented in JC07 because only a point value was obtained for each of the 383 MCS events (see first paragraph of this section), and the maximum TAdv might not have corresponded to this location. Furthermore, this point value was obtained 6 h prior to MCS initiation, and this signal could have been weaker than at MCS initiation time. Second, any smoothing or compositing, if applied,

might have affected the maximum values of TAdv in JC07's study; this certainly would have diminished the maximum TAdv values relative to what is observed using standard operational gridded datasets. Interestingly, Cotton et al. (1999) noted that their composite maps were a product of a great deal of filtering, averaging, and interpolation, with only the strongest signals remaining. Nevertheless, their Fig. 7a showed a maximum TAdv of 26.2×10^{-5} K s⁻¹ (0.94 °C h⁻¹), which appears higher than the *point-based values* obtained from JC07. Moreover, this is an order of magnitude higher than displayed in the composite maps of JC07 (~5.0×10⁻⁵ K s⁻¹, their Fig. 9a). It therefore appears that smoothing was not necessarily the cause for the small values of TAdv in JC07, relative to operational values or even those from Cotton et al. (2007).

3. Conclusions and summary

Based on the above comments regarding JC07, the following conclusions are made:

- The MCS index is not suitable for operations in its present form because it is dominated by the TAdv component when applied to standard operational gridded datasets. Not much additional value will be gained by viewing the MCS index on AWIPS (and likely other operational software platforms) than otherwise would be gained by viewing TAdv alone.
- Individuals in training and especially operational roles should investigate new indices *before* implementing them in operations in order to determine their efficacy at producing desirable results. It may be that indices developed with non-operational datasets will result in unintended consequences when applied to standard operational gridded datasets.

It likely was not the intent of JC07 to have TAdv over-weighted in the MCS index using standard operational gridded datasets. Despite the present conclusions, the MCS index might be adapted for operations if the TAdv component is weighted appropriately. Ideally, JC07 could recompute the mean and standard deviation in order to adjust the normalization for the TAdv component in Eqn. (1), which appears to be the source of the problem. In the interim, a less desirable approach for operational purposes would be to derive a different weight for TAdv. For example, through testing it was found that if TAdv is divided by 2.5 before it is input into Eqn. (1), the MCS index produces a range of values that is consistent with JC07, and furthermore, the TAdv component values are much closer to the values for SVM and LI (i.e., the slope of the dotted line in Fig. 2 changes to between the two solid lines). An additional consideration to this weighting would be for operational forecasters to create a "procedure or macro" whereby the MCS index is displayed simultaneously with the LI, SVM, and TAdv (such as in a 4-panel display), thus affording the opportunity to compare the MCS index with its three constituents. This conforms to the spirit of JC07, who noted the MCS index should be used in conjunction with other information.

The importance of investigating and displaying other indices in a similar manner as suggested here cannot be overstated for trainers and operational forecasters alike. In the case of the widely used significant tornado parameter (STP; Thompson et al. 2003), as just an example, one could compute ranges of reasonable weights for the components involving mean-layer CAPE (MLCAPE), 0–6-km shear, 0–1-km storm-relative helicity (SRH), and mean-layer lifted condensation level (MLLCL) height. This process would reveal that the MLCAPE and SRH components have the relatively largest weights, while the 0–6-km shear and MLLCL

components have the relatively smallest weights; both SRH and MLLCL components can be negative. The four constituent variables of the STP ideally should be viewed concurrent with the STP, analogous to what was proposed above for the MCS index, because the same value of an index can result from vastly different combinations of the input variables.

In summary, it is believed a multivariate index can have some utility for forecasters (e.g., highlighting areas of potential concern in short order) if the following three conditions are satisfied: (i) the variables for the index are physically related to the process being forecast, which appears to be the case for the MCS index; (ii) the weighting factors and the mathematical formulation of the variables for the index are sound—a partial problem noted with the MCS index; and (iii) forecasters understand what goes into the index and are aware of its strengths and limitations. The last step is arguably the most important, and this is why forecasters should always consult the constituent variables of any index to avoid the pitfalls of using the index. Finally, it is suggested that *anyone* proposing an index should consider doing something similar to the methods discussed herein; this should not be left only to trainers and operational forecasters.

Acknowledgments. The comments and suggestions provided by Chuck Doswell, Jeff Manion, Paul Smith, Steve Weiss, and Jon Zeitler are greatly appreciated. I also would like to thank Dave Carpenter (Meteorologist-in-Charge, WFO Rapid City, South Dakota) for supporting this work. The views expressed are those of the author and do not necessarily represent those of the National Weather Service.

REFERENCES

- Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: A climatology. *Mon. Wea. Rev.*, **118**, 1103–1121.
- Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. *Mon. Wea. Rev.*, **117**, 765–783.
- Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting severe storms. *Electronic J. Severe Storms Meteor.*, **1** (3), 1–22.
- Maddox, R. A., and C. A. Doswell III, 1982: An examination of jet stream configurations, 500-mb vorticity advection, and low-level thermal advection patterns during extended periods of intense convection. *Mon. Wea. Rev.*, **110**, 184–197.
- Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. *Bull. Amer. Meteor. Soc.*, **87**, 343–360.
- Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. *Wea. Forecasting*, **22**, 813–838.
- Junker, N. W., R. S. Schneider, and S. L. Fauver, 1999: A study of heavy rainfall events during the Great Midwest flood of 1993. *Wea. Forecasting*, **14**, 701–712.
- Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. *Wea. Forecasting*, **18**, 1243–1261.

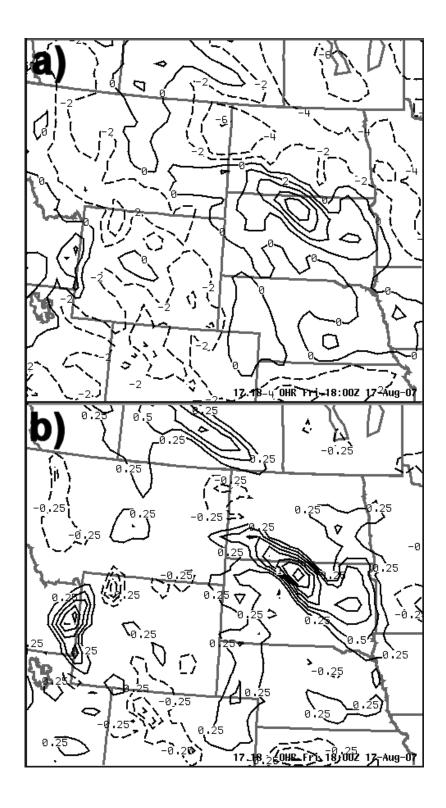

FIGURE CAPTIONS

Figure 1. Plot of the (a) MCS index and (b) 700-mb temperature advection (TAdv) valid 1800 UTC 17 August 2007 from the 40-km RUC. Contour intervals are 2 for the MCS index (dashed negative) and 0.25 °C h⁻¹ for TAdv (dashed negative; zero contour omitted).

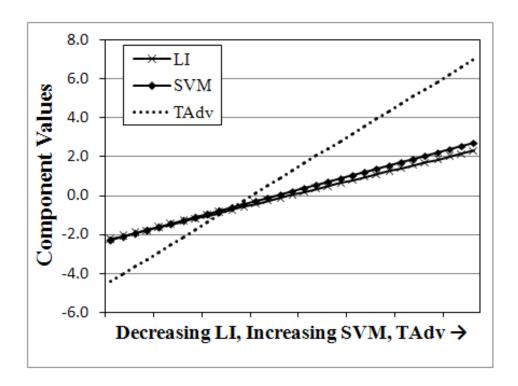

Figure 2. Plot of the components of the MCS index according to Eqn. (1) using the variable ranges given in Table 1. The ordinate displays component values for LI, SVM, and TAdv. The abscissa covers the ranges of LI (-3 to +12 °C), SVM (0 to 25 m s⁻¹), and TAdv (-27.8 to $+55.6\times10^{-5}$ K s⁻¹).

TABLE CAPTIONS

Table 1. Ranges and corresponding values for the three components of the MCS index; the three components are summed to produce the MCS index. Ranges for the "best" lifted index (LI), 0–3-km shear vector magnitude (SVM), and 700-mb temperature advection (TAdv) are based on reasonably observed values in operations. Shaded values represent the range of $\pm 2\sigma$ from the mean using JC07's dataset. Note that two different units of TAdv are given: one is the standard MKS version (10^{-5} K s⁻¹) and the other (\mathcal{C} h^{-1} , *italicized*) is used operationally at WFO RAP. The reasonable operationally observed lowest component values (-2.2, -2.3, -4.4) yield an MCS index of -8.9 (first row of data) and the highest component values (2.3, 2.7, 7.0) yield an MCS index of +12.0 (last row of data).

Figure 1. Plot of the (a) MCS index and (b) 700-mb temperature advection (TAdv) valid 1800 UTC 17 August 2007 from the 40-km RUC. Contour intervals are 2 for the MCS index (dashed negative) and 0.25 °C h⁻¹ for TAdv (dashed negative; zero contour omitted).

Figure 2. Plot of the components of the MCS index according to Eqn. (1) using the variable ranges given in Table 1. The ordinate displays component values for LI, SVM, and TAdv. The abscissa covers the ranges of LI (-3 to +12 °C), SVM (0 to 25 m s⁻¹), and TAdv (-27.8 to $+55.6\times10^{-5}$ K s⁻¹).

Table 1. Ranges and corresponding values for the three components of the MCS index; the three components are summed to produce the MCS index. Ranges for the "best" lifted index (LI), 0–3-km shear vector magnitude (SVM), and 700-mb temperature advection (TAdv) are based on reasonably observed values in operations. Shaded values represent the range of $\pm 2\sigma$ from the mean using JC07's dataset. Note that two different units of TAdv are given: one is the standard MKS version (10^{-5} K s⁻¹) and the other ($^{\circ}$ C h^{-1} , *italicized*) is used operationally at WFO RAP. The reasonable operationally observed lowest component values (-2.2, -2.3, -4.4) yield an MCS index of -8.9 (first row of data) and the highest component values (2.3, 2.7, 7.0) yield an MCS index of +12.0 (last row of data).

LI (°C)	LI Component	SVM SV (m s ⁻¹)	M Component	TAdv (10 ⁻⁵ K s ⁻¹	90 h-1)	TAdv Comp	onent	
3.0	-2.2	0.0	-2.3	-27.8,	-1.0	-4.4		
2.5	-2.1	0.8	-2.1	-25.0,	-0.9	-4.0		
2.0	-1.9	1.7	-2.0	-22.2,	-0.8	-3.7		
1.5	-1.8	2.5	-1.8	-19.4,	-0.7	-3.3		
1.0	-1.6	3.3	-1.6	-16.7,	-0.6	-2.9		
0.5	-1.5	4.2	-1.5	-13.9,	-0.5	-2.5		
0.0	-1.3	5.0	-1.3	-11.1,	-0.4	-2.1		
-0.5	-1.2	5.8	-1.1	-8.3,	-0.3	-1.8		
-1.0	-1.0	6.7	-1.0	-5.6,	-0.2	-1.4		
-1.5	-0.9	7.5	-0.8	-2.8,	-0.1	-1.0		
-2.0	-0.7	8.3	-0.6	0.0,	0.0	-0.6		
-2.5	-0.6	9.2	-0.5	2.8,	0.1	-0.2		
-3.0	-0.4	10.0	-0.3	5.6,	0.2	0.1		
-3.5	-0.3	10.8	-0.1	8.3,	0.3	0.5		
-4.0	-0.1	11.7	0.0	11.1,	0.4	0.9		
-4.5	0.0	12.5	0.2	13.9,	0.5	1.3		
-5.0	0.2	13.3	0.4	16.7,	0.6	1.7		
-5.5	0.3	14.2	0.5	19.4,	0.7	2.0		
-6.0	0.5	15.0	0.7	22.2,	0.8	2.4		
-6.5	0.6	15.8	0.9	25.0,	0.9	2.8		
-7.0	0.8	16.7	1.0	27.8,	1.0	3.2		
-7.5	0.9	17.5	1.2	30.6,	1.1	3.6		
-8.0	1.1	18.3	1.4	33.3,	1.2	3.9		
-8.5	1.2	19.2	1.5	36.1,	1.3	4.3		
-9.0	1.4	20.0	1.7	38.9,	1.4	4.7		
-9.5	1.5	20.8	1.9	41.7,	1.5	5.1		
-10.0	1.7	21.7	2.0	44.4,	1.6	5.5		
-10.5	1.8	22.5	2.2	47.2,	1.7	5.9		
-11.0	2.0	23.3	2.4	50.0,	1.8	6.2		
-11.5	2.2	24.2	2.5	52.8,	1.9	6.6		
-12.0	2.3	25.0	2.7	55.6,	2.0	7.0		